
00

a

o
<

CONVERGENCE CONDITIONS FOR NONLINEAR PROGRAMMING ALGORITHMS

By

W. I. Zangwill

Working Paper No. 197

Revised March, 1968

Center for Research in Management Science
University of California

Berkeley

O This research was supported (in part) by a grant from the Office of.
Naval Research Grant No. ONR-NR-OU7-069 to the University of California, and'
administered through the Center for Research in Management Science. Reproduc-
tion in whole or part is permitted for any purpose of the United States

Reproduced by tho
CLEARINGHOUSE

for Foder.il Scientific & Technical
Information Sprtngftold Va 221-1

^

CONVERGENCE CONDITIONS FOR NONLINEAR PROGRAM4INO ALGORITHMS

W. I. Zangwill

School of Busioess Administration
University of California

Berkeley, Callftornia

Abstract

Conditions which are necessary and sufficient for convergence of a

nonlinear programming algorithm are stated. It is also shown that the

convergence conditions can be easily applied to most programming algorithms.

As examples, algorithms by Arrow, Hurwlcz and Uzawa; Cauchy; Frank and

Wolfe; and Newton-Raphson are proven to converge by direct application of

the convergence conditions. Also the Topkis-Velnott convergence conditions

for feasible direction algorithms are shown to be a special case of the

conditions stated in this paper.

Background and Summary

Nearly twenty years ago F. John [7], and Kuhn and Tucker [10], in

brilli. nt papers, discussed when a given point was optimal for a nonlinear

programming problem. Under certain assumptions they gave necessary and

sufficient conditions for a point to be optimal. From a practical concave

programming orientation the question, "Is a given point optimal?" was now

settled. Moreover, their conditions prompted exploration of a broader

problem, viz., given a point which is not optimal, how can an optimal point

be located. la effect, F. Johi> andKuhn and Tucker answered the static question

of knowing when a given point was optimal, but did not resolve the dynamic

question of how to move from a point which is not optimal to an optimal one.
partial

As/answers to the latter question numerous nonlinear programming algorithms

have been developed. One of the earliest and best known of these, the

Simplex Method [k], actually predates the F. John, and Kuhn-Tucker conditions.

Even a casual glance at the literature reveals the plethora of

algorithmic techniques; each one seemingly different from the next, each

having its own advantages and disadvantages. As is well known, it is

often extremely difficult to prove that an algorithm converges. In fact,

only a small percentage of all suggested procedures have ever been proven

to converge. And even some which at first were thought to converge were

later found to have incorrect or incomplete proofs. Furthermore, each

algorithm seemed to have its own unique and different proof.

It is the purpose of this paper to explore the similarities among

algorithms. Do the Simplex Method, the Newton-Raphson Method, and in .

fact, all programming algorithms have a common essence? And if so,

do there exist features which insure algorithmic convergence? In an

important paper Topkis and Veinott [12], have studied these questions for

the class of feasible direction algorithms. It will be shown that their

conditions are subsumed by the conditions presented in this paper. But in

addition, this paper will not only give conditions that are sufficient to

insure convergence, but also will pose conditions that convergent algorithms

necessarily satisfy.

The practical impact of these conditions will be illustrated by using

them to prove convergence of several well-known algorithms. For example, we

correct an error in Uzawa's modification of the Arrow-Hurwicz algorithm. Further-

more, in most cases the convergence proofs are considerably simpler than

the original proofs. Even when there is no obvious siraplifination or

improvement, the convergence conditions provide a unified and straightforward

method for proving convergence.

The Algorithm as an Iterative Procedure

Consider the general nonlinear programming problem, called problem (P).

■HMMlaBblMa

(1) maximize f(x)

(P)

(2) subject to g-Cx) > 0 i=l,'",m,

where all functions are real-valued and x e E , n-dimensional Euclidean

sp€u:e. It is assumed throughout the paper that f is continuous. Define

F vl En as the set of all x vhich satisfy (2). The set F is the feasible

set. Any point x e F that maximizes f is said to be an optimal point

for (P). We assume T f *, where <» is the null set.

Our goal is to analyze algorithmic procedures for solving problem

(P). For definiteness assume the algorithms are for digital computers,

and therefore, the algorithms generate a discrete sequence of points.

Furthermore, the algorithm need not operate directly upon the points x,

but say on related points z. We may thus view an algorithm as a rather

sophisticated iterative procedure, that given a point z either stops or

k+1 generates a successor z . For generality assume that the points z on

which the procedure operates need not be in E . Merely require that they

be defined on a given metric space (V, p). Often the metric space will in

fact be En with the usual metric.

Now examine the iterative operation itself. Given a point z the

k+1 procedure yields a point z . It may be possible to actually define a

k+1 k function A: V -> V such that z = A(z). The function then defines the

iterative procedure. Unfortunately in many cases such a function would not

be well defined as there may not be a unique value A(z) for a given z.

As an example, consider the Simplex Method and suppose the point z has

just been generated. The point z is a basic feasible solution of the

constraining linear inequalities. Now assume that the next point y, also

a basic solution, is to be generated. The point y, called a successor point,

k

may not be well defined as there might be a tie in the choice of the variable

to enter the basis. That is, there are situations in which several possible y

can conceivably be generated from z. Similar ambiguity about the successor

to a point z arises in other algorithms. We are therefore forced to

consider procedures that may generate a y in some set. The set being

the set of all possible successor points that the iterative operation could

conceivably generate from a particular z.

It should also be observed that the procedure might depend upon the

number of iterations k already taken place. A procedure which does not

depend upon k is said to be autonomous. As autonomous procedures are so

numerous an autonomous iterative procedure will be defined first. This

definition will then motivate the more abstract definition for the general

iterative procedure.

The Autonomous Iterative Procedure

Consider a particular problem (P) and a given metric space (V, p).

Letting oP(V) denote power set, define a point to set mapping A: V -» (P{v).

Then the autonomous iterative procedure operates as follows. Given z e V

2 k k assume z ,"•,% have been generated. Then, if A(z) = ♦ the procedure

k k+1 stops. Otherwise y € A(z) is a possible value for z "" and furthermore

zk+1 e A(zk).

The more general definition will now be stated.

The Iterative Procedure

Consider a particular problem (P) and a given metric space (V, p).

Fbr all k > 1 define a set V C V. For any point z e V, define a set

1 2 k
The iterative procedure is as follows. Given z c V, assume z ,«'«,z

If

have been generated. If 4» = A. (z), the procedure stops. Othervise any

y c A. (x) is a possible value of z , and furthermore, z € Ak^x ^*
v

It should be clear that the set A(z) Is the set of all successors to

k k
z for the autonomous procedure, while for the general procedure A^Cz)

is that set.

Before continuing it is useful to develop some notation for subsequences,

The letter K, perhaps superscripted, will denote an infi.üte subsequence

k oo k of the integers. Any subsequence of {z). can be denoted {z)„ for

an appropriate K. If the subsequence converges to a point z00 we write

z -♦ z00 k e K. The subsequence (z)„ is simply the subsequence formed

by adding 1 to each k c K. If zk+1 -» z0+1 k € K, then z"+1 is the

k+1 k 1 limit of the subsequence {z)„. The notation (z) . where K CK

will mean an infinite subsequence of subsequence (z)„.

The Convergence Conditions

Our immediate goal is to determine some conditions that are necessary

and sufficient for an iterative procedure to be a convergent algorithm. But

first the concept of convergence must be clarified. It is difficult to

write a foolprocf definition of convergence other than the tautology that

convergence is the property which all convergent algorithms have. To begin

with we specify a set n C V called the solution set. Any point z € n is

called a solution point or solution, and the algorithm will seek points in fl.

The set n will be defined by some given property; the property perhaps

depending on the problem and the algorithm under consideration. Often Ü

will be the set of optimal points to problem (P). However, many other

6

properties can be used to define fi. For example fi could be any one of

the following: the set of all points in an e neighborhood of an optimal

point, all roots of an equation, all efficient or Pareto points, all

equilibrium points, etc. Nevertheless, it is assumed that for any given

problem and algorithm the set of solution points SI has been defined.

Of course, fj may turn out to be empty for certain problems.

Ideally, ve would like an algorithm either to determine a solution point

if one exists or to indicate that a solution does not exist. In addition,

if a solution does not exist, it should tell us why such a point does not

exist. Unfortunately, such properties are far too stringent to impose upon

any conceivable algorithm iraplementable on any conceivable digital computer.

We, therefore, adopt a somewhat practical definition of an algorithm based

upon the properties of extant convergent algorithms.

A convergent algorithm is an Iterative procedure with the following

properties:

a) If the procedure stops at a point z, then the algorithm indicates

either that no solution exists or that z is a solution. Also if a point

v k k
z is a solution, then either Ak(z) = * or ye A. (z) implies y is

a solution.

b) If the procedure generates an infinite sequence of points none of

which are solutions, then if txll points ar* not on a compact set

no solution point exists while if all points are on a compact set the

limit of any convergent subsequence is a solution point.

Sufficient Conditions

Certain conditions known as convergence conditions may now be stated

such that if an algorithm satisfies these conditions it is a convergent

algorxchra. The first condition is, roughly speaking, a compactness condition.

7
that may arise due to lack of compactness

A key complication in nonlin ar programming algorithms/is that there may be

no optimal point to problem (P). In this case the maximum operation on f

has to be replaced by a supremum operation. Condition I is intended to

circumvent such a problem.

Condition I. a) If for some z and k A. (z) = $, then the algorithm

indicates either that z is a solution or that no solution exists. Should

k k k z be a solution, then either A. (z) = 4» or ye A. (z) implies y is

a solution, b) If the procedure generates an infinite sequence of points

none of which are solution points, then if a solution exists there is a

compact set X svch that z e X for all k.

This condition is akin to similar assumptions made for nonlinear

programming algorithms [6, 15, 16]. If anything it is somewhat less

restrictive than most assumptions of this type.

Condition II is the crucial assumption that guarantees convergence.

Condition II. If z e X, a compact set, for all k, then there

exists a continuous function Z: X -> E such that:

Il-a) Given any point z then there exists an L. such that for

all i > Lk + k

Z(zl) >Z(zk).

Il-b) Suppose the algorithm generates an infinite sequence of points

none of which are solutions. Also suppose there exists a

k 00 00 convergent subsequence z -» z k e K such that z is not

1 k * 1 a solution. Then there is a K such that z -♦ z k e K and

Z(z*) >Z(z00).

The previously developed conditions will now be proven sufficient to

insure that an iterative procedure is actually a convergent algorithm, in that

it will satisfy the definition of convergence.

8

Theorem 1. Consider an iterative procedure on a metric space (V, p)

and assume conditions I and II hold. Then the procedure is a convergent

algorithm.

Proof. By I-a ve are assured that if the algorithm stops at z then

either z is a solution or that no solution point exists. Also if z is

a solution any successor point is also a solution.

Consider now that the procedure generates an infinite sequence of points

(z }j. none of which are solutions. If the points are not all on a compact

set, then by I-b no solution point exists. If all points are on a compact

set, then any subsequence must contain a convergent subsequence. It only

remains to prove that the limit of any convergent subsequence must be a

solution.

It first will be shown that the sequence (Z(z)). , itself has a limit.
k*

Applying Il-a there exists a sequence (z) such that

(3) Z(zk*) - minimvan {Zizl)\i > k).

k*\ Furthermore, the sequence {Z(z)) is monotonic increasing. Also by

k* compactness of X a convergent subsequence (z)K# may be extracted from

k* k * * (z } such that z -»z k e K . By monotoniclty

(U) lim Z(zk*) = limZ(zk) - Z(z*)
k*-v* kcK*

where the final equality is by continuity of the Z.

Now consider any convergent subsequence z -» z* k € K . By continuity

lin^ Kf Z(z
k) « Z(zl). Given k* and using (3) we may select k« € K1 so

large that Ziz*') > Z{z**). Hence

(5) Z(z')>Z(z*).

mmmmm mm

But by II-a given any k- e K' there is an L. such that i > L. + k

implies

Z(zk,) < Ziz*) .

Thus for k* large enough

k*

Z(k,) < Z(zk*).

Monotonie!ty of {Z(z)} implies Z(z) < Z(z). Thus

(6)

By (5) and (6)

Z(z') < Z(z*).

Z(z*) » Z^'),

As this holds for any limit point z1 it must be that

(7) lim Z(2K) « Z(z*).
k-t»

Up to this point Il-b has not been employed. It will be used nov.

Let z -» z* k e K. It must be proven that z* is a solution. Assume

z" is not a solution. Then by Il-b there is a K such that z -> z

k e K and
Z(z*) > Z(z00).

But by (7) this is impossible. Hence z00 must be a solution,

Q.E.D.

The next corollary will add insight into the previous theorem. It is

useful for the autonomous case. But before we state it, we must define a

closed map.

A map A: V -♦ {P{V) is said to be closed at z00 if

a) zk -» z00 k € K,

b) yk -» y" k c K

and

mm

10

c) yk € A(zk; k € K

imply

y e A(z).

Corollary 1-1. This is the same as Theorem 1 except that Condition II

is replaced by II1 where:

Condition II'.; If z € X, a compact set, for all k, then there

exists a continuous function Z: X -*E such that

II -a) If z is a solution, then either the procodure terminates or

y e A(z) implies

Z(y) > Z(z).

While if z is not a solution, y c A(z) implies

Z(y) >Z(z).

II'-b) The map A(z) is closed at any z not a solution.

Proof. Clearly Il'-a) implies Il-a). We now show that Il-b holds. Let

K oo iv
z -» z k € K

k+1
such that the subsequence (z)vl converges.

■k+1 -# " - K1 .

where z00 is not a solution. By compactness of X, there is a IT" C K

.... „ *
z -» z k e

However,

zk+:L 6 A(zk) k € K1 .

Using the definition of closedness

z € A(zco).

But z* by assumption is not a solution. Therefore from II1-a

Z(z) > Z(z*).

O.E.D.

11

For further implications of this theorem see [16].

It should be remarked that if V is a finite set, I-a and 11'-a insure

finite convergence.

Necessary Conditions for Convergence

It will now be shown that using the previous definition of convergent

algorithm, I and II necessarily follow.

Theorem 2; Consider an iterative procedure on (V, p) which is a

convergent algorithm. Let fi, the set of all solution points, be closed.

Then conditions I and II necessarily follow.

Proof; Condition I-a holds easily as it is a) of the definition of

convergence. Assume that an infinite sequence of points is generated none

of which are solutions. If all points are not on a compact set

no solution point exists so that I-b holds.

Assume therefore that z e X for all k where X is compact. It

must now be shown that Il-a holds.

(9) Define Z(z) «= - inf{p(z, y);y € n).

It is straightforward to show that Z is a continuous function Z: X -» E .

Note that Z(z) =0 implies z € fi as ü is closed.

k v» Consider the sequence (Z(z)r,. It will be established that

(10) lira Z(zK) = 0.
k-x»

k oo But this raust be true for consider any subsequence z -» z k e K. Then

lira Z(zK) = Z(2ro) = 0.
keK

employing the continuity of Z and the fact that by hypothesis any limit

point z00 ±r a solution.

12

Now »nftlyze II-a. Let z be optimal. Then by a) of the convergence

definition, if there exists aye A. (z), then y is also optimal. Hence

for any / > k

Z(zk) - Z(zk+1) - ZCz*) - 0.

Assume now z is not optimal. Then Z(z) < 0. But by (10) there exists

an 1^ such that for all i > Lk ■♦• k, Z(zk) < Z(ti) < 0.

Only Condition Il-b remains. But Il-b holds vacuously as any limit

point of any convergent subsequence must be a solution.

O.E.D.

Application of the Convergence Conditions

In this section a representative sample of the bettor known algorithms

will be proved to converge using the convergence conditions. In several caaes

the convergence proofs are considerably simpler than the original proofs.

But given any algorithm the convergence conditions provide a framework from

which to start a convergence proof. Presumably such a framework is a better

place to commence than starting each proof from scratch. Proving convergence

has not yet been reduced to filling in the blanks. But it is hoped that the

convergence conditions will simplify the problem.

Occasionally in the following algorithms certain assumptions are made

which are slightly stronger than the corresponding assumptions made by the

algorithm's originators. The purpose of this is solely for clarity. The

proofs also hold with the weaker assumptions.

Unconstrained Maxima

Some of the simplest, yet most useful, algorithms seek the unconstrained

maximum of f over En. An important class of these algorithms, known as

unconstrained feasible direction algorithms, are easily proven to satisfy

13

conditions I and II of Corollary 1-1 and hence are convergent algorithms,

as is now shown.

Each algorithm in this class possesses a continuous function b: En -* En

k k+1 that serves as a direction. Briefly given a point x , the successor x

is generated by maximizing f in the direction b(x).

Denoting Vf{x) as the gradient of f evaluated at x, a point x is

termed a solution if 7f(x)b(x) « 0. We specify the map A by x' c A(x) if

and only if x' is an optimal solution to

(11) max{f(x + Tb(x))|T > 0).
^unconstrained feasible directiorT)
TheTalgorithm operates as"~follows. If x is a solution stop. Otherwise

k+1 k k define the successor by calculating x € A(x). For simplicity let T satisfy

(12) xk+1 - xk + r^i^).

To prove convergence the following two assumptions will be needed.

i) Either f has no solution point or the set (x|f(x) > f(x0))

, .„ 0 is compact for any x

and

ii) If x is not a solution, then x' e A(x) implies f(x') > f(x).

It will now be shown that any unconstrained feasible direction algorithm

which satisfies i) and ii) also satisfies conditions I and II'. Assumption i)

insures that I holds since if no x' satisfies equation (ll) then there is

n k k
no solution point. Coniition Il'-a is verified by letting V = E , x = z ,

and Z(z) = f(x), because (ll) insures that f(x) is monotonic. Also ii)

provides that if x is not a solution

f(xk+1) > f(xk).

Condition Il'-b will now be established. Let x -> x^ and ic -» x

k € K. By continuity b(x) -» bCx"), k e K. Assume x00 is not a solution,
(.by definition of solution) ^ „

then7b(x) / 0. It then follows from (12) that for some T" > 0, T -»t k € K.

Using (ll) for any T > 0

f(xk+1) = f(x^tkb(xk)) > f(xk+Tb(xk)).

Ik

Taking limits

„ / 00+1 \ • -/OT 00, ^XV rt/0C % / oo V \ f(x) = f(x +T b^x)) > f(x +Tb(x)),

As this holds for any T > 0

fCx"*1) ^ maxCfCx80 + Tb(xeo))|T > 0) .

Therefore the map A is closed and condition II'-b holds. The algorithm

converges.

By applying the above reasoning two popular algorithms are seen to

converge. The first is the Cauchy [2] procedure. This procedure assumes

the f is continuously differentiable and defines b(x) = Vf(x). The

second is a modified Newton-Raphson algoriUjn. For this algorithm f is

assumed to have continuous second partial derivatives and its Hessian matrix

at x, H(x); is assumed negative definite for all x. Defining H' (X)

as the inverse of the Hessian, b(x) = -H' (x)7f(x). It might also be noted

that the above reasoning provides an alternative to Theorem 2 of Topkis and

Veinott [12].

TM Frank and Wolfe Algorithm

The Frank and Wolfe algorithm [6] is for problem (P) when all constraints

g. are linear and f is continuously differentiable. Assume the feasible

region F is compact. Given any x € F define A(x) as follows. Solve

the linear programming problem where x is fixed via the Simplex Method

(13) max{7f(x)w|w c F}

for an optimal w . Then x' € A(x) if and only if x1 is an optimal solution

to

(Ik) max(f(x + T(W -x))|0 < T < 1).

Note that for 0 < T < 1, x + T(W-X) e F. Therefore given x e F all

successor points will also be feasible.

15

l 1 A point x is called n .solution if Vf(x)(w -x) = 0 where w solves

(13). Should x be a solution the procedure stops and A(x) = 4>, The

algorithm ia now specified and we will prove its convergence using conditions

I and II.

Condition I holds immediately as F is compact. Letting V = F,

s = x, and Z(z) * f(z)/ equation (l'O insures that Il-a holds.

Now condition Il-b must be established. Let x -»x" and x -» x

00 k for k c K. Assume x is not a solution. Define w as the optimal

point to problem (13) when x = x . From the theory of linear programming

and the fact that f has continuous derivatives, there must exist a

IC C K such that w -♦ w00 k € IT" where v* solves (13) for x * x00.

Given any fixed T, 0 < T < 1

f(xk+1) > f(xk+ T(wk - xk)).

From the continuity

f(x'B+1) > raaxCfCx" + xCw^-x00))^ < T < 1) > f(x"),

where the final inequality holds as x" not optimal implies

Vf(xa,)(ww-x00) > 0.

.'__Corollary]..l.)

Hence, condition Il-b holds. The algorithm can also be proved to converge via/

Modifications of the above reasoning can be used to validate that many

similar algorithms satisfy the convergence condition. In particular, the

decomposable nonlinear programming method of Zangwill [ih], Zoutendijk's

methods of feasible directions [17], and the Convex Simplex Method of

Zangwill [15] fall into this category.

The Direction Function

Topkis and Veinott [12] consider the concept of a direction function.

16

This concept is quite useful for proving that feasible direction algorithms

converge. Let F, the feasible region, be compact. A direction b e L'n is

called a feasible direction at x c F if for some t > 0, x + Tb c F, for

all 0 < T < t. If b is feasible at x and, in addition, f(x) < f(x+Tb)

for all 0 < T < t, then b is also said to be usable at x. Should no

usable direction exist at x € F, the point x is termed a solution.

As f is continuous and F is compact a solution point clearly exists.
wo assume

For every sequence (x ,x ,x , •••,x ,•••) in F/there is a direction function

Ik k 1 2 k
b which assigns to (x ,'",x) a feasible direction b = b(x ,x ,«««,x)

k k at x . All b are contained in a compact set.
k k oo

Let (z , b) -> (zv , b) k e K, then the Topkis-Veinott conditions
specify that

i) For some t > 0, xk + Tbk c F for all k c K and all

0 < T < t.

ii) If b00 is feasible but not usable at x00, then x*0 is a

solution.

Also there is a real-valued lower semi-continuous step size function

f [A, W) defined on the Cartesian product F (x) F such that f (x, x+Tb)

is continuous in T. This function satisfies conditions

iii) f^x, x) = f(x) and f^x, w) < f(w) for w, x € F,

and

iv) if b is usable at x for f, then b is usable for

f^(:c, •) at x.
algori thnic ,2 . .

The/procedure is defined as follows. Given x ,x ,'",x , if x

k+1 is a solution the procedure stops. Otherwise the point x ' is generated

by

(15) rL(xk, xk+1) = max(f1(xk, xk + Tbk) |T > 0, xk + Tbk € F).

17

It muat now be shown that any procedure which satisfies the above fuur

conditions also satisfies I and II. Let En be the metric space and define

V = F and V. « (x) for all k. The algorithm is then defined as follows

f # if x is a solution

Ak(xk) = V

(x) otherwise

Also let Z(x) = f(x).

Condition I holds as the set F is compact. Condition Il-a holds

because equation (15) and condition iii) insure that f is raonotonic.

1c oo It+l oo+l
Condition Il-b now must be established. Let x-»x kcK, x -»x

k e K and b -» b k € K. Assume x is not a solution. It must be

proved that

f(x0O+1)> f(x").

By i) and the compactness of F, x00 + Tb" e F for all 0 < T < t, and thut

b is feasible. Since b" is feasible but x" is not a solution, b"

must be usable by ii). Then via iv) there exists a 0 < T < t such that

(16) f^x", x" + TV) > i'^x00, x00) = f(xw).

vbepau^c^.
Furthermore, ^' x -»x" k € K and b -► b00 k e K

xk + th* - x00 + TV k € K.

In addition, by i) as T
1
 < t, xk + t1** c T for all k € K.

Using (15) and iii)

„/ k+lx . .1, k k+lv ^ .1/ k k L kx f(x) > f (x , x) > f^(x , x + ib).

18

KxpJLoiting the continuity of f and lower ;3cmi-continul cy of f ,

f(x"+1) - lim f(xk+1) > lim inf f1(xk, xk+1)
k€K " kcK

> lim inf f;L(xk
/ xk+ i\k)

k€K

^^(x", x" + TV).

Hence Il-b holds for using (lo)

f(x00*1) > fCx"),

The fact that the Topkis-Veinott conditions are a special case of the

convergence conditions I and II establiohes that the many algorithms proved

by their techniques can also be proved by the convergence conditions. One

class of algorithms subsumed by these conditions are the so-called cyclic

coordinate ascent methods. These methods optimize one coordinate at a time.

Arrpw-Hurwicz-Uzawa Algorithm

The Uzawa iterative adaption [1] of the Arrow-Hurwicz gradient method

considers the following modification of (P)

maximize f(x)

subject to g(x) > 0

x > 0

where f is strictly concave and g(x) = (gjCx), • • •,£ (x)) is a vector

of the constraints a. each of which is assumed concave. All functions are

continuously differentiable on E . It is also supposed that a vector x

exists such that x > 0 and g. (x) > 0 for all i.

Define a Lagrangean function

*(x, u) = f(x) + ug(x)

^^Ma^aaMwaaMa

19

where H is an ra vector. Consider a point (7, if) assumed to exist;

called a saddle point, such that

(19) '(x-, u) ■ max =(xi u) « min *(x, u).
xX) uX)

By strict concavity there is a unique x which solves (19). Let

U * {u|(xi u) is a saddle point of *(x, u)). It is easy to show that

U is compact [1, p. 155]«

The algorithm is defined by the difference equations

(20a) xk+1 = max[0, xk + T* (xk, uk)]

(20b) uk+1 = raax[0, uk - TH'u(xk, uk)]

where x > 0 and u > 0, T is a positive scalar to be specified

subsequently, and * = V *(x , u") and * = g(x) are respectively the
A A LI

partial derivatives of * with respect to x and u.

Given e > 0 a point z = (x, u) is termed a solution if

— 2
lÜT - x(< E.

The algorithm commences with an initial point z = (x , u) and

k k k recursively generates points z = (x , u) via equations (20a) and (20b)

until a solution is obtained. The algorithm stops at a solution.

To specify T first define

Then

Z(x, u) = min {|x - x|2 + |u - ul2),
ueU

(x-x)y - (ü-u)f
T = min u

|y |2 + |* |2
1 x' ' u1

-.2
| < |x-x| , Z(x,u) < J, u e U }

J

20

where J = Z(x , u). The value of T will be positive because the numerator

of the function being minimized is positive as the next lemma proves, also

the function is continuous and the region of minimization is compact.

Lemma 3.

(x - x)* - (ü - u)* > 0 if x / x.

Proof: By concavity of * in x

y(x, u) < !P(x, u) + (x - x)f .

Since *u = g,

1l{x, Ü) - (G - u)^ = f(x, u).

Therefore

«(x, u) - *(^, u) < (3? - x)*x - (u - u)*u. (1)

Now by definition of a saddle point, and since f is strictly concave

*(x, ü) < *(x, u) < ^(x - u)

Therefore from (l)

0 < *(x, u) - *(x, u) < (x - u)?v - (u - u)* . Q.E.D.

We now prove convergence via Corollary 1.1. Condition II will be

established first. If z = (x, u) is a solution the procedure terminates.

k k It Now suppose z => (x , u) is not a solution. After some manipulation it

can be shown that [1, page 156]

1 k+1 -,2^ 1 k+1 -,2 . k -|2 , 1 k -.2 x - x + u - u < x -x + u -u

• - T{2[a.xjC)*x - (ü-U)TU] - t[|fxr + i*ur]] (2)

We will validate 11'-a (reversing inequalities) by proving that

Z(xk+1, uk+1) < Z(xk
l u

k) (3)

20a

However, to prove (3) we see from (2) that it is only necessary to show

2[(x.xk)yx - (TI-u)^] - T[|*X|
2
 + IfJ2] > 0. (4)

Employing the definition of T, the left side of {k) is larger than

/ft-xV - (u-uV A o o
2C(^. xk)V (u-u)*] -' —f —z u (hg2 + l*u|2)

r xi i ui

- [(J- xk)!Fx - GI- uVu]

> 0

where the final inequality holds via Lernraa 3 as z is not a solution. Thus

II'-a) holds.

Condition 11'-b) holds immediately as the recursions (20a) and (20b) are

continuous functions.

We observe that from equation (3) for all k

Z(xk, uk) < J.

k k k
Therefore all z * (x , u) generated are on a compact set. Furthermore,

by assumption a saddle point exists, therefore condition I also holds. The

algorithm converges.

21

Other Algorithms

Several other algorithms have been proved by application of the

convergence conditions. In particular, loss function methods ■•. • ' '

such as Zangwill's penalty function method [13] and Fiacco and McCormick's

sequential unconstrained approach [5] have been established using the

convergence conditions. Also cutting plane methods [8] have been considered.

Conclusion

This paper has presented an attempt to unify the convergence proofs of

nonlinear programming algorithms. Both necessary and sufficient conditions

for convergence were discussed. The methods presented seem related to but

are actually somewhat different than the differential equation stability

theory of Liapunov [11]. For the special case in which A(x) is a function,

that is, A(xk) = x]r+i> &T& in addition A(x) is continuous, the convergence

conditions may be considered as Liapunov conditions for the nonlinear

programming case. Finally, it should also be clear by selecting the solution

set n astutely, algorithms other than the nonlinear programming algorithm

can be considered.

Acknowledgment

The author expresses his appreciation to Professor R. van Slyke for

his comments on a previous version of this paper. Professor James Friedman

suggested an important simplification of Condition Il-b.

22

References

1. Arrow, K. J., Hurwicz, L., and Uzawa, H. Studies in Linear and Nonlinear

Programming, Stanford University Press, Stanford, California, 1958.

2. Cauchy, A. L., "Method General pour la Resolution des Systems d'Equations

Siraultanees, C.R.R. Sei., Paris, IS2*?, Ch. 25, pp. 536-53Ö.

3. Cheney, E. W. and Goldstein, A. A., "Newton's Method of Convex

Programming and Tchebycheff Approximation," Numer. Math., Vol. 1,

1959, PP. 253-268.

't. Dantzig, G. B., Linear Programming and ExtenFion:^ :. iceton University

Press, Princeton, N. J., 1963.

5. Fiacco, A. V. and McCormick, G. P., "The Sequtvi- ^strained

Minimization Technique for Nonlinear Progi ■ :. • ng, e Pn; "'-Dual

Method," Management Science, Vol. 10, No. 2, pp. 360-36'+, I96U.

6. Frank, M. and P. Wolfe, "An Algorithm for Quadratic Programming,"Naval

Research Logistics Quarterly, Vol. 3, 1956, pp. 95-110.

7. John, F., "Extreraum Problems with Inequalities as Subsidiary Conditions,"

Studies and Essays, Courant Anniversary Volume, Interscience, New York,

19^8.

8. Kelley, J. E., "The Cutting Plane Method for Solving Convex Programs,"

J. Soc. Indust. Appl. Math., Vol. 8, No. 1*, December i960, pp. 703-712.

9. Kelley, J. L., General Topology, D. Van Nostrand Co., Inc., Princeton,

New Jersey, 1963«

10. Kuhn, H. W. and Tucker, A. W., "Non-Linear Programming," Proceedings of

the Second Berkeley Symposium on Mathematical Statistics and Probability,

J. Neyman (ed.), University of California Press, Berkeley, 1951,

pp. U8l-^93.

23

11. La Salle, J. and Lefschetz, S., Stability by Liapunov's Direct Method,

Academic Press, N. Y., London, 1961.

12. TopkiJ, D. M. and Veinott, Jr., A, F., "On the Convergence of Some

Feasible Direction Algorithms for Nonlinear Programming," 3IAM Journal

on Control, Vol. 5, No. 2, 1967, pp. 268-279.

13. Zangwill, W. I., "Non-Linear Programming via Penalty Functions,"

Manasement Sciencc-A, Vol. 13, No. ^, pp. 3^-3^6.

lb. , "A Decomposable Nonlinear Programming Approach," Operations

Research. Vol. 15, No. 6, Nov-Dec 1967, pp. IO68-IO87.

15. , "The Convex Simplex Method," Management Science-A, Vol. lh,

No. 3, Nov. 1967, pp. 221-238.

16. , "Application of the Convergence Conditions," Working Paper

No. 231, Center for Research in Management Science, University of

California, Berkeley, August 1967.

17. Zoutendijk, G., Methods of Feasible Directions, Slse ier Publ. Co.,

Amsterdam, i960.

